A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning

نویسندگان

  • Shafin Rahman
  • Salman Hameed Khan
  • Fatih Murat Porikli
چکیده

Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our method produces one principal direction for each seen class. Then, it learns how to combine these directions to obtain the principal direction for each unseen class such that the CAPD of the test image is aligned with the semantic embedding of the true class, and opposite to the other classes. This allows efficient and class-adaptive information transfer from seen to unseen classes. In addition, we propose an automatic process for selection of the most useful seen classes for each unseen class to achieve robustness in zero-shot learning. Our method can update the unseen CAPD taking the advantages of few unseen images to work in a few-shot learning scenario. Furthermore, our method can generalize the seen CAPDs by estimating seen-unseen diversity that significantly improves the performance of generalized zero-shot learning. Our extensive evaluations demonstrate that the proposed approach consistently achieves superior performance in zero-shot, generalized zero-shot and few/one-shot learning problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image-Mediated Learning for Zero-Shot Cross-Lingual Document Retrieval

We propose an image-mediated learning approach for cross-lingual document retrieval where no or only a few parallel corpora are available. Using the images in image-text documents of each language as the hub, we derive a common semantic subspace bridging two languages by means of generalized canonical correlation analysis. For the purpose of evaluation, we create and release a new document data...

متن کامل

Deep Multiple Instance Learning for Zero-shot Image Tagging

In-line with the success of deep learning on traditional recognition problem, several end-to-end deep models for zero-shot recognition have been proposed in the literature. These models are successful to predict a single unseen label given an input image, but does not scale to cases where multiple unseen objects are present. In this paper, we model this problem within the framework of Multiple ...

متن کامل

A Generative Approach to Zero-Shot and Few-Shot Action Recognition

We present a generative framework for zero-shot action recognition where some of the possible action classes do not occur in the training data. Our approach is based on modeling each action class using a probability distribution whose parameters are functions of the attribute vector representing that action class. In particular, we assume that the distribution parameters for any action class in...

متن کامل

Supplementary Material: An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild

– Section 1: Hyper-parameter tuning strategies (Section 4.2 of the main text). – Section 2: Novelty detection approaches: details and additional results (Section 4.3 and 5.2 of the main text). – Section 3: Comparison between zero-shot learning approaches: additional ZSL algorithm, dataset, and results (Section 5 of the main text). – Section 4: Analysis on (generalized) zero-shot learning: detai...

متن کامل

Learning to Compare: Relation Network for Few-Shot Learning

We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.08653  شماره 

صفحات  -

تاریخ انتشار 2017